

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME								
CENTER NUMBER					CANDIDATE NUMBER			
MATHEMATICS	S (US)						0444	4/41
Paper 4 (Extend	ded)					Ма	y/June 2	2017
						2 hours	s 30 minu	utes
Candidates ans	wer on the	e Question	Paper.					
Additional Mate	rials:	Geometrica Electronic						
READ THESE	INSTRUC	TIONS FIR	ST					
You may use ar Do not use stap DO NOT WRITE	les, pape	r clips, glue	or corre					
Electronic calcu	ed for any lators sho accuracy digits. n degrees	ould be used is not speci to one deci	d. ified in th mal plac	ee.	orovided. e answer is not exac	t, give the	answer t	:О
The number of The total of the				[] at the end of eac	ch question or part qu	uestion.		
Write your cald	culator m	odel in the	box be	ow.				

Formula List

For the equation

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Lateral surface area, A, of cylinder of radius r, height h.

$$A = 2\pi rh$$

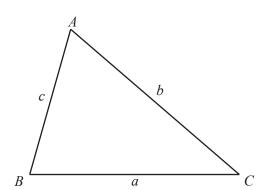
Lateral surface area, A, of cone of radius r, sloping edge l.

$$A = \pi r l$$

Surface area, A, of sphere of radius r.

$$A = 4\pi r^2$$

Volume, V, of pyramid, base area A, height h.

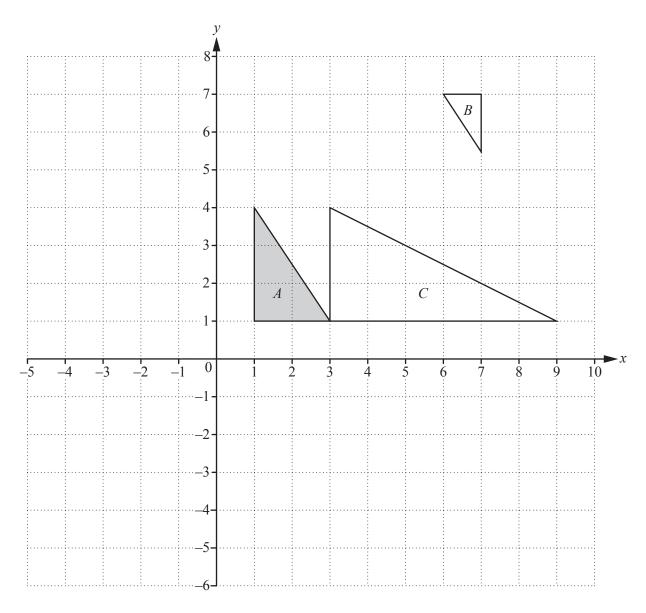

$$V = \frac{1}{3}Ah$$

Volume, V, of cone of radius r, height h.

$$V = \frac{1}{3} \pi r^2 h$$

Volume, V, of sphere of radius r.

$$V = \frac{4}{3} \pi r^3$$



$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Area =
$$\frac{1}{2}bc\sin A$$

1

- (a) (i) Draw the image of triangle A after reflection in the line y = 4. [2]
 - (ii) Draw the image of triangle A after rotation of 90° counterclockwise about (0, 0). [2]
 - (iii) Draw the image of triangle A after translation by the vector $\begin{pmatrix} 1 \\ -5 \end{pmatrix}$. [2]
- (b) (i) Describe fully the **single** transformation that maps triangle A onto triangle B.
 - (ii) Describe fully the **single** transformation that maps triangle A onto triangle C.

2 An energy company charged these prices in 2013.

Electricity price	Gas price
23.15 cents per day	24.5 cents per day
plus	plus
13.5 cents for each unit used	5.5 cents for each unit used

	(i) In 90 days, the Siddique family used 1885 units of electricity .) ((a)
	Calculate the total cost, in dollars, of the electricity they used.		
[2]	\$		
	(ii) In 90 days, the gas used by the Khan family cost \$198.16.	(
	Calculate the number of units of gas used.	(
	Carearate the number of ants of gas used.		
units [3]			
oer year.	In 2013, the price for each unit of electricity was 13.5 cents. Over the next 3 years, this price increased exponentially at a rate of 8%		(b)
	Calculate the price for each unit of electricity after 3 years.	(
cents [2]			
s to 7.7 cents.	Over these 3 years, the price for each unit of gas increased from 5.5 ce) ((c)
	(i) Calculate the percentage increase from 5.5 cents to 7.7 cents.		
% [3]			

	(ii)	Over the 3 years, the 5.5 cents increased exponentially by 7.7 cents.	the same	percentage	each y	year to
		Calculate the percentage increase each year.				
						. % [3
(d)	In 2	015, the energy company divided its profits in the ratio				L -
		shareholders: bonuses: development $= 5:2:6$.				
	In 2	015, its profits were \$390 million.				
	Calo	culate the amount the company gave to shareholders.				
(e)	This	share price of the company in June 2015 was \$258.25. s was an increase of 3.3% on the share price in May 2015.	\$		mill	lion [2 _]
			\$			[3]

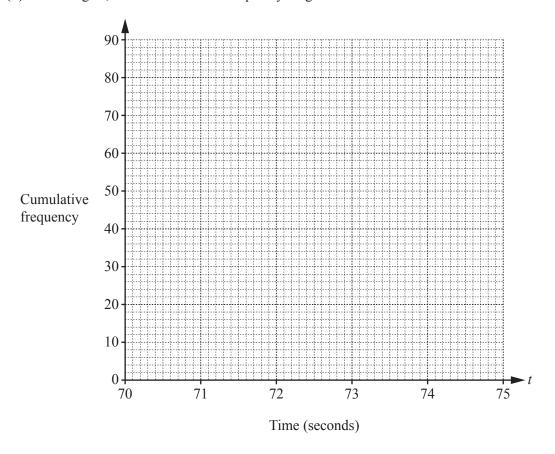
3 The time taken for each of 90 cars to complete one lap of a race track is shown in the table.

Time (t seconds)	$70 < t \le 71$	$71 < t \le 72$	72 < <i>t</i> ≤ 73	$73 < t \le 74$	74 < <i>t</i> ≤ 75
Frequency	17	24	21	18	10

(a)	Write	down	the	modal	time	interv	al.
-----	-------	------	-----	-------	------	--------	-----

< t ≤	 Г1Т
 \ \ \ \ \	 1

(b) Calculate an estimate of the mean time.


	S	[4	1
--	---	----	---

(c) (i) Complete the cumulative frequency table.

Time (t seconds)	<i>t</i> ≤ 71	<i>t</i> ≤ 72	<i>t</i> ≤ 73	<i>t</i> ≤ 74	<i>t</i> ≤ 75
Cumulative frequency	17				

[2]

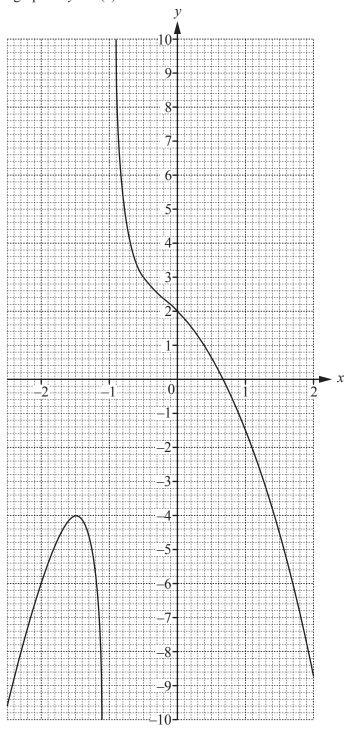
(ii) On the grid, draw a cumulative frequency diagram to show this information.

(iii) Find the median time.

 S	[1		
 9	Ľ	١.	

[3]

(iv) Find the inter-quartile range.


a	Γ	٦
 S	<i>-</i>	,

(d) One lap of the race track measures 3720 m.

One car took 40 seconds to complete the first 2000 m and then traveled the remaining part of the lap at a speed of 190 km/h.

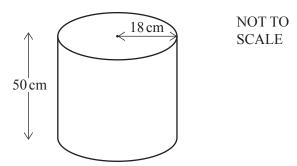
Calculate the average speed for the whole lap. Give your answer in km/h.

4 The diagram shows the graph of y = f(x) for $-2.5 \le x \le 2$.

(a)	Find	C(1)
101	Hina	TI I I

.....[1]

(b) Solve f(x) = 3.

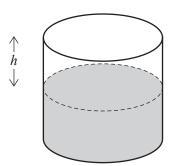

 $x = \dots [1]$

(c) The equation f(x) = k has only one solution for $-2.5 \le x \le 2$. Write down the range of values of k for which this is possible.

.....[2

	(d)	By drawing a suitable straight line, solve the equation $f(x) = x$	- 5.
			=
	(e)	Draw a tangent to the graph of $y = f(x)$ at the point where $x =$	1.
		Use your tangent to estimate the slope of $y = f(x)$ when $x = 1$.	
			[2]
			[3]
5		$f(x) = 2x - 1$ $g(x) = x^2 + 1$ $h(x) = 3^x$	
	(a)	Find h(2).	
			[1]
	(h)	$g(f(x)) = ax^2 + bx + c$	
	(0)		
		Find the values of a , b and c .	
			a =
			<i>b</i> =
			<i>c</i> =[3]
	(c)	Find $f^{-1}(x)$.	
			$f^{-1}(x) = \dots [2]$
	(d)	Find <i>x</i> when $h^{-1}(x) = 0.5$.	
			x = [1]

6 (a) The diagram shows a cylindrical container used to serve coffee in a hotel.


The container has a height of 50 cm and a radius of 18 cm.

(i) Calculate the volume of the cylinder and show that it rounds to 50 900 cm³, correct to 3 significant figures.

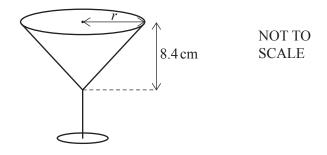
[2]

(ii) 30 liters of coffee are poured into the container.

Work out the height, h, of the empty space in the container.

NOT TO SCALE

 $h = \dots$ cm [3]


(iii) Cups in the shape of a hemisphere are filled with coffee from the container. The radius of a cup is 3.5 cm.

Work out the maximum number of these cups that can be completely filled from the 30 liters of coffee in the container.

(b) The hotel also uses glasses in the shape of a cone.

The capacity of each glass is $95 \, \text{cm}^3$.

(i) Calculate the radius, r, and show that it rounds to 3.3 cm, correct to 1 decimal place.

[3]

(ii) Calculate the curved surface area of the cone.

..... cm² [4]

7	(a)	Exp	and and sin	nplify.
		(*)	1(2 + 5)	<i>5</i> (2

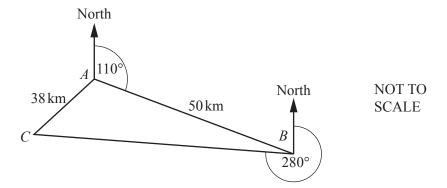
(i)
$$4(2x+5)-5(3x-7)$$

	[2]
(ii) $(x-7)^2$	

.....[2]

(b) Solve.

(i)
$$\frac{2x}{3} + 5 = -7$$


(ii) 4x+9=3(2x-7)

(iii)
$$3x^2 - 1 = 74$$

 $x = \dots$ or $x = \dots$ [3]

8	A li	ne joins the points $A(-3, 8)$ and $B(2, -2)$.	
	(a)	Find the co-ordinates of the midpoint of <i>AB</i> .	
	(b)	Find the equation of the line through A and B . Give your answer in the form $y = mx + b$.) [2]
	(c)	Another line is parallel to AB and passes through the point $(0, 7)$. Write down the equation of this line.	<i>y</i> =[3]
	(d)	Find the equation of the line perpendicular to AB which passes throughout Give your answer in the form $ax + by = d$ where a , b and d are integrated as a , b , and d are integrated as a , b , and d are integrated as a , b , and d are integrated as a , b , and d are integrated as a , b , and d are integrated as a .	[2] ugh the point (1, 5). gers.
			[4]

9 (a)

A, B and C are three towns. The bearing of B from A is 110° . The bearing of C from B is 280° . AC = 38 km and AB = 50 km.

(i)	Find	the	bearing	of A	from	В.
-----	------	-----	---------	--------	------	----

(ii	()	Calc	culat	e ar	ngle	BA	\mathcal{C}

Angle
$$BAC = \dots [5]$$

(iii) A road is built from A to join the straight road BC.

Calculate the shortest possible length of this new road.

	 km [3]

- (b) Town A has a rectangular park.
 The length of the park is x m.
 The width of the park is 25 m shorter than the length.
 The area of the park is 2200 m².
 - (i) Show that $x^2 25x 2200 = 0$.

[1]

(ii) Solve $x^2 - 25x - 2200 = 0$. Show all your working and give your answers correct to 2 decimal places.

 $x = \dots$ or $x = \dots$ [4]

Question 10 is printed on the next page.

10	(a)	The	<i>n</i> th term	of a sec	quence is	s $8n-3$.						
		(i)	Write de	own the	first two	o terms o	of this sec	quence.				
		(ii)	Show th	nat the n	umber 2	.03 is no	t in this s	equence.			. ,	[1]
	(b)	Fino	d the <i>n</i> th	term of	these sec	quences.						[2]
		(i)	13,	19,	25,	31,	•••					
		(ii)	4,	8,	14,	22,						[2]
	(c)					,	20,	50,				[2]
					_	ence is 2	20 and the	third term	n is 50.			
										multiply by 5		
		r III (a me valu	ic 01 <i>y</i> al	iiu work	out the	msi tem	of this sec	диенсе.	·		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

First term =[4]

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.